Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications

LTQ-Orbitrap 中的低分辨率数据独立采集可实现组蛋白修饰的简化和完全非靶向分析

阅读:7
作者:Simone Sidoli, Johayra Simithy, Kelly R Karch, Katarzyna Kulej, Benjamin A Garcia

Abstract

Label-free peptide quantification in liquid chromatography-mass spectrometry (LC-MS) proteomics analyses is complicated by the presence of isobaric coeluting peptides, as they generate the same extracted ion chromatogram corresponding to the sum of their intensities. Histone proteins are especially prone to this, as they are heavily modified by post-translational modifications (PTMs). Their proteolytic digestion leads to a large number of peptides sharing the same mass, while carrying PTMs on different amino acid residues. We present an application of MS data-independent acquisition (DIA) to confidently determine and quantify modified histone peptides. By introducing the use of low-resolution MS/MS DIA, we demonstrate that the signals of 111 histone peptides could easily be extracted from LC-MS runs due to the relatively low sample complexity. By exploiting an LTQ-Orbitrap mass spectrometer, we parallelized MS and MS/MS scan events using the Orbitrap and the linear ion trap, respectively, decreasing the total scan time. This, in combination with large windows for MS/MS fragmentation (50 m/z) and multiple full scan events within a DIA duty cycle, led to a MS scan cycle speed of ∼45 full MS per minute, improving the definition of extracted LC-MS chromatogram profiles. By using such acquisition method, we achieved highly comparable results to our optimized acquisition method for histone peptide analysis (R(2) correlation > 0.98), which combines data-dependent acquisition (DDA) and targeted MS/MS scans, the latter targeting isobaric peptides. By using DIA, we could also remine our data set and quantify 16 additional isobaric peptides commonly not targeted during DDA experiments. Finally, we demonstrated that by performing the full MS scan in the linear ion trap, we achieve highly comparable results as when adopting high-resolution MS scans (R(2) correlation 0.97). Taken together, results confirmed that histone peptide analysis can be performed using DIA and low-resolution MS with high accuracy and precision of peptide quantification. Moreover, DIA intrinsically enables data remining to later identify and quantify isobaric peptides unknown at the time of the LC-MS experiment. These methods will open up epigenetics analyses to the proteomics community who do not have routine access to the newer generation high-resolution MS/MS generating instruments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。