Online Detection of Laser Welding Penetration Depth Based on Multi-Sensor Features

基于多传感器特征的激光焊接熔深在线检测

阅读:5
作者:Kun She, Donghui Li, Kaisong Yang, Mingyu Li, Beile Wu, Lijun Yang, Yiming Huang

Abstract

The accurate online detection of laser welding penetration depth has been a critical problem to which the industry has paid the most attention. Aiming at the laser welding process of TC4 titanium alloy, a multi-sensor monitoring system that obtained the keyhole/molten pool images and laser-induced plasma spectrum was built. The influences of laser power on the keyhole/molten pool morphologies and plasma thermo-mechanical characteristics were investigated. The results showed that there were significant correlations among the variations of the keyhole-molten pool, plasma spectrum, and penetration depth. The image features and spectral features were extracted by image processing and dimension-reduction methods, respectively. Moreover, several penetration depth prediction models based on single-sensor features and multi-sensor features were established. The mean square error of the neural network model built by multi-sensor features was 0.0162, which was smaller than that of the model built by single-sensor features. The established high-precision model provided a theoretical basis for real-time feedback control of the penetration depth in the laser welding process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。