A cardiac amino-terminal GRK2 peptide inhibits insulin resistance yet enhances maladaptive cardiovascular and brown adipose tissue remodeling in females during diet-induced obesity

心脏氨基末端 GRK2 肽可抑制胰岛素抵抗,但会增强女性在饮食引起的肥胖过程中不适应的心血管和棕色脂肪组织重塑

阅读:6
作者:Iyad H Manaserh, Kamila M Bledzka, Isaac Ampong, Alex Junker, Jessica Grondolsky, Sarah M Schumacher

Abstract

Obesity and metabolic disorders are increasing in epidemic proportions, leading to poor outcomes including heart failure. With a growing recognition of the effect of adipose tissue dysfunction on heart disease, it is less well understood how the heart can influence systemic metabolic homeostasis. Even less well understood is sex differences in cardiometabolic responses. Previously, our lab investigated the role of the amino-terminus of GRK2 in cardiometabolic remodeling using transgenic mice with cardiac restricted expression of a short peptide, βARKnt. Male mice preserved insulin sensitivity, enhanced metabolic flexibility and adipose tissue health, elicited cardioprotection, and improved cardiac metabolic signaling. To examine the effect of cardiac βARKnt expression on cardiac and metabolic function in females in response to diet-induced obesity, we subjected female mice to high fat diet (HFD) to trigger cardiac and metabolic adaptive changes. Despite equivalent weight gain, βARKnt mice exhibited improved glucose tolerance and insulin sensitivity. However, βARKnt mice displayed a progressive reduction in energy expenditure during cold challenge after acute and chronic HFD stress. They also demonstrated reduced cardiac function and increased markers of maladaptive remodeling and tissue injury, and decreased or aberrant metabolic signaling. βARKnt mice exhibited reduced lipid deposition in the brown adipose tissue (BAT), but delayed or decreased markers of BAT activation and function suggested multiple mechanisms contributed to the decreased thermogenic capacity. These data suggest a non-canonical cardiac regulation of BAT lipolysis and function that highlights the need for studies elucidating the mechanisms of sex-specific responses to metabolic dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。