Corticosteroids reduce glial fibrillary acidic protein expression in response to spinal cord injury in a fetal rat model of dysraphism

皮质类固醇可降低脊髓闭合不全胎儿大鼠模型中脊髓损伤引起的胶质纤维酸性蛋白表达

阅读:6
作者:Antônio Aldo Melo-Filho, Maria Weber Guimarães Barreto, Azize Cristina Capelli Nassr, Fábio Rogério, Francesco Langone, Luis Antonio Violin Pereira, Lourenço Sbragia

Background

Exposure of the spinal cord in myelomeningocele (MM) throughout gestation increases spinal injury. Astrocyte activation evidenced by glial fibrillary acidic proteins (GFAP) indicates the extent of injury. Corticosteroids modulate GFAP synthesis, but their effect in MM is unclear. The

Conclusions

Experimentally induced dysraphism in the rat fetus is related to glial response and increased GFAP expression in the spinal cord. Corticoid treatment clinically improved nerve injury in some fetuses. It reduced glial reaction and GFAP expression.

Methods

Dysraphism was surgically created in 2 groups of 48 rat fetuses; group 1: control, and group 2: treated with corticosteroid. Each group was subdivided into fetuses with surgically created MM, controls and shams on day 18.5 of gestation (term = 22 days). Fetuses were harvested on day 21.5, examined for evidence of neurological deficits, and the following clinical parameters were registered: kyphosis, tail deformities, leg deformities, leg paralysis or paresis and pain perception. The fetuses were fixed for GFAP immunostaining.

Results

All fetuses with MM in group 1 presented neurological deficits and glial reactions with GFAP expression, as opposed to controls and shams. In group 2, corticosteroid treatment prevented some neurological deficits (18-25%), reducing glial response and GFAP expression. Conclusions: Experimentally induced dysraphism in the rat fetus is related to glial response and increased GFAP expression in the spinal cord. Corticoid treatment clinically improved nerve injury in some fetuses. It reduced glial reaction and GFAP expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。