Gene editing-based targeted integration for correction of Wiskott-Aldrich syndrome

基于基因编辑的靶向整合治疗 Wiskott-Aldrich 综合征

阅读:5
作者:Melissa Pille, John M Avila, So Hyun Park, Cuong Q Le, Haipeng Xue, Filomeen Haerynck, Lavanya Saxena, Ciaran Lee, Elizabeth J Shpall, Gang Bao, Bart Vandekerckhove, Brian R Davis

Abstract

Wiskott-Aldrich syndrome (WAS) is a severe X-linked primary immunodeficiency resulting from a diversity of mutations distributed across all 12 exons of the WAS gene. WAS encodes a hematopoietic-specific and developmentally regulated cytoplasmic protein (WASp). The objective of this study was to develop a gene correction strategy potentially applicable to most WAS patients by employing nuclease-mediated, site-specific integration of a corrective WAS gene sequence into the endogenous WAS chromosomal locus. In this study, we demonstrate the ability to target the integration of WAS2-12-containing constructs into intron 1 of the endogenous WAS gene of primary CD34+ hematopoietic stem and progenitor cells (HSPCs), as well as WASp-deficient B cell lines and WASp-deficient primary T cells. This intron 1 targeted integration (TI) approach proved to be quite efficient and restored WASp expression in treated cells. Furthermore, TI restored WASp-dependent function to WAS patient T cells. Edited CD34+ HSPCs exhibited the capacity for multipotent differentiation to various hematopoietic lineages in vitro and in transplanted immunodeficient mice. This methodology offers a potential editing approach for treatment of WAS using patient's CD34+ cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。