Natural Scaffolds with Multi-Target Activity for the Potential Treatment of Alzheimer's Disease

具有多靶点活性的天然支架可用于治疗阿尔茨海默病

阅读:4
作者:Luca Piemontese, Gabriele Vitucci, Marco Catto, Antonio Laghezza, Filippo Maria Perna, Mariagrazia Rullo, Fulvio Loiodice, Vito Capriati, Michele Solfrizzo3

Abstract

A few symptomatic drugs are currently available for Alzheimer's Disease (AD) therapy, but these molecules are only able to temporary improve the cognitive capacity of the patients if administered in the first stages of the pathology. Recently, important advances have been achieved about the knowledge of this complex condition, which is now considered a multi-factorial disease. Researchers are, thus, more oriented toward the preparation of molecules being able to contemporaneously act on different pathological features. To date, the inhibition of acetylcholinesterase (AChE) and of β-amyloid (Aβ) aggregation as well as the antioxidant activity and the removal and/or redistribution of metal ions at the level of the nervous system are the most common investigated targets for the treatment of AD. Since many natural compounds show multiple biological properties, a series of secondary metabolites of plants or fungi with suitable structural characteristics have been selected and assayed in order to evaluate their potential role in the preparation of multi-target agents. Out of six compounds evaluated, 1 showed the best activity as an antioxidant (EC50 = 2.6 ± 0.2 μmol/µmol of DPPH) while compound 2 proved to be effective in the inhibition of AChE (IC50 = 6.86 ± 0.67 μM) and Aβ1⁻40 aggregation (IC50 = 74 ± 1 μM). Furthermore, compound 6 inhibited BChE (IC50 = 1.75 ± 0.59 μM) with a good selectivity toward AChE (IC50 = 86.0 ± 15.0 μM). Moreover, preliminary tests on metal chelation suggested a possible interaction between compounds 1, 3 and 4 and copper (II). Molecules with the best multi-target profiles will be used as starting hit compounds to appropriately address future studies of Structure-Activity Relationships (SARs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。