A rapid, multiplex digital PCR assay to detect gene variants and fusions in non-small cell lung cancer

一种快速、多重数字 PCR 检测非小细胞肺癌基因变异和融合的方法

阅读:4
作者:Bryan Leatham, Katie McNall, Hari K K Subramanian, Lucien Jacky, John Alvarado, Dominic Yurk, Mimi Wang, Donald C Green, Gregory J Tsongalis, Aditya Rajagopal, Jerrod J Schwartz

Abstract

Digital PCR (dPCR) is emerging as an ideal platform for the detection and tracking of genomic variants in cancer due to its high sensitivity and simple workflow. The growing number of clinically actionable cancer biomarkers creates a need for fast, accessible methods that allow for dense information content and high accuracy. Here, we describe a proof-of-concept amplitude modulation-based multiplex dPCR assay capable of detecting 12 single-nucleotide and insertion/deletion (indel) variants in EGFR, KRAS, BRAF, and ERBB2, 14 gene fusions in ALK, RET, ROS1, and NTRK1, and MET exon 14 skipping present in non-small cell lung cancer (NSCLC). We also demonstrate the use of multi-spectral target-signal encoding to improve the specificity of variant detection by reducing background noise by up to an order of magnitude. The assay reported an overall 100% positive percent agreement (PPA) and 98.5% negative percent agreement (NPA) compared with a sequencing-based assay in a cohort of 62 human formalin-fixed paraffin-embedded (FFPE) samples. In addition, the dPCR assay rescued actionable information in 10 samples that failed to sequence, highlighting the utility of a multiplexed dPCR assay as a potential reflex solution for challenging NSCLC samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。