Inhibition of K+ Channels Affects the Target Cell Killing Potential of CAR T Cells

K+通道的抑制影响CAR-T细胞的靶细胞杀伤潜力

阅读:5
作者:Ghofrane Medyouni, Orsolya Vörös, Vivien Jusztus, György Panyi, György Vereb, Árpád Szöőr, Péter Hajdu

Abstract

Ion channels of T cells (Kv1.3, KCa3.1, and CRAC) participate in the regulation of activation and effector functions via modulation of the Ca2+-dependent pathway. T cells expressing chimeric antigen receptors (CAR T cells) showed a remarkable role in anti-tumor therapy, especially in the treatment of chemotherapy-resistant liquid cancers. Nevertheless, many challenges remain to be overcome to improve the treatment for solid tumors. In this study, we assessed the expression and role of ion channels in CAR T cells. We found that HER2-specific CAR T cells had higher KCa3.1 conductance compared to the non-transduced (NT, control) cells, which was more prominent in the CD8+ population (CD4+ cell also showed elevation). Conversely, the Kv1.3 expression level was the same for all cell types (CD4+, CD8+, CAR, and NT). Single-cell Ca2+ imaging revealed that thapsigargin-induced SOCE via CRAC is suppressed in CD8+ CAR T cells, unlike for CD4+ and CD8+ NT cells. To dissect the functional role of Kv1.3 and KCa3.1, we used specific antagonists (Kv1.3: Vm24; KCa3.1: TRAM-34): the target cell elimination capacity of the CD8+ CAR T cells was improved either by blocking KCa3.1 or Kv1.3. These results imply that ion channels could be a target in CAR T cell immunotherapy elaboration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。