Environmental variables associated with Nothophaeocryptopus gaeumannii population structure and Swiss needle cast severity in Western Oregon and Washington

与俄勒冈州西部和华盛顿州 Nothophaeocryptopus gaeumannii 种群结构和瑞士针叶严重程度相关的环境变量

阅读:6
作者:Patrick I Bennett, Jeffrey K Stone

Abstract

The environment has a strong influence on the abundance and distribution of plant pathogenic organisms and plays a major role in plant disease. Climatological factors may also alter the dynamics of the interactions between plant pathogens and their hosts. Nothophaeocryptopus (=Phaeocryptopus) gaeumannii, the causal agent of Swiss needle cast (SNC) of Douglas-fir, is endemic to western North America where it exists as two sympatric, reproductively isolated lineages. The abundance of this fungus and the severity of SNC are strongly influenced by climate. We used statistical and population genetic analyses to examine relationships between environment, pathogen population structure, and SNC severity. Although N. gaeumannii Lineage 2 in western Oregon and Washington was most abundant where SNC symptoms were most severe, we did not detect a significant relationship between Lineage 2 and disease severity. Warmer winter temperatures were inversely correlated with foliage retention (AFR) and positively correlated with the relative abundance of Lineage 2 (PL2). However when distance inland, which was strongly correlated with both AFR and PL2, was included in the model, there was no significant relationship between Lineage 2 and AFR. Spring/early summer dew point temperatures also were positively associated with total N. gaeumannii abundance (colonization index (CI)) and inversely correlated with AFR. Warmer summer mean temperatures were associated with lower CI and higher AFR. Our results suggest that the two lineages have overlapping environmental optima, but slightly different tolerance ranges. Lineage 2 was absent from more inland sites where winters are colder and summers are warm and dry, while Lineage 1 occurred at most sites across an environmental gradient suggesting broader environmental tolerance. These relationships suggest that climate influences the abundance and distribution of this ecologically important plant pathogen and may have played a role in the evolutionary divergence of these two cryptic fungal lineages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。