Mechanism of outer membrane destabilization by global reduction of protein content

蛋白质含量整体减少导致外膜不稳定的机制

阅读:4
作者:Irina V Mikheyeva, Jiawei Sun, Kerwyn Casey Huang, Thomas J Silhavy

Abstract

The outer membrane (OM) of Gram-negative bacteria such as Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation in bamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. We demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, PLs flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape. Significance statement: The outer membrane (OM) is a selective permeability barrier that contributes to the intrinsic antibiotic resistance of Gram-negative bacteria. Biophysical characterization of the roles of the component proteins, lipopolysaccharides, and phospholipids is limited by both the essentiality of the OM and its asymmetrical organization. In this study, we dramatically change OM physiology by limiting the protein content, which requires phospholipid localization to the outer leaflet and thus disrupts OM asymmetry. By characterizing the perturbed OM of various mutants, we provide novel insight into the links among OM composition, OM stiffness, and cell shape regulation. These findings deepen our understanding of bacterial cell envelope biology and provide a platform for further interrogation of OM properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。