Engineering of an E. coli outer membrane protein FhuA with increased channel diameter

改造大肠杆菌外膜蛋白 FhuA 以增加通道直径

阅读:6
作者:Manuel Krewinkel, Tamara Dworeck, Marco Fioroni

Background

Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering.

Conclusion

In this study using a simple "semi rational" approach the FhuA Δ1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA Δ1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA Δ1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications.

Results

The FhuA Δ1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal β-strands, resulting in variant FhuA Δ1-159 Exp. The total number of β-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD) spectroscopy shows a high β-sheet content, suggesting the correct folding of FhuA Δ1-159 Exp. To further prove the FhuA Δ1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine) were conducted. The results indicated a 17% faster diffusion kinetic for FhuA Δ1-159 Exp as compared to FhuA Δ1-159, well correlated to the expected channel surface area increase of ~16%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。