Deep learning-based discovery of compounds for blood pressure lowering effects

基于深度学习发现具有降血压作用的化合物

阅读:13
作者:Rongzhen Li #, Tianchi Wu #, Xiaotian Xu #, Xiaoqun Duan, Yuhui Wang

Abstract

The hypotensive side effects caused by drugs during their use have been a vexing issue. Recent studies have found that deep learning can effectively predict the biological activity of compounds by mining patterns and rules in the data, providing a potential solution for identifying drug side effects. In this study, we established a deep learning-based predictive model, utilizing a data set comprised of compounds known to either elevate or lower blood pressure. Subsequently, the trained model was used to predict the blood pressure-lowering effects of 26,000 compounds. Based on the predicted results, we randomly selected 50 molecules for validation and compared them with literature reports. The results showed that the predictions for 30 molecules were consistent with literature reports, with known antihypertensive drugs such as reserpine, guanethidine, and mecamylamine ranking at the top. We further selected 10 of these molecules and 3 related protein targets for molecular docking, and the docking results indirectly confirmed the model's accuracy. Ultimately, we discovered and validated that salaprinol significantly inhibits ACE1 activity and lowers canine blood pressure. In summary, we have established a highly accurate activity prediction model and confirmed its accuracy in predicting potential blood pressure-lowering compounds, which is expected to help patients avoid hypotensive side effects during clinical medication and also provide significant assistance in the discovery of antihypertensive drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。