Osteochondral regeneration of the femoral medial condyle by using a scaffold-free 3D construct of synovial membrane-derived mesenchymal stem cells in horses

使用无支架的 3D 构建体滑膜衍生的间充质干细胞进行马股骨内侧髁骨软骨再生

阅读:8
作者:Daiki Murata, Shingo Ishikawa, Takafumi Sunaga, Yasuo Saito, Takeshi Sogawa, Koichi Nakayama, Seiji Hobo, Takashi Hatazoe

Background

Medical interventions for subchondral bone cysts in horses have been extensively studied. This study investigated the regeneration of articular cartilage and subchondral bone with scaffold-free three-dimensional (3D) constructs of equine synovial membrane-derived mesenchymal stem cells (SM-MSCs) isolated from three ponies and expanded until over 1.0 × 107 cells at passage 2 (P2).

Conclusions

Implantation of a scaffold-free 3D-construct of SM-MSCs into an osteochondral defect could regenerate the original structure of the cartilage and subchondral bone over 6 months post-surgery in horses, indicating the potential of this technique in treating equine subchondral bone cysts.

Results

SM-MSCs were strongly positive for CD11a/CD18, CD44, and major histocompatibility complex (MHC) class I; moderately positive for CD90, CD105, and MHC class II; and negative for CD34 and CD45 on flow cytometry and differentiated into osteogenic, chondrogenic, and adipogenic lineages in the tri-lineage differentiation assay. After culturing SM-MSCs until P3, we prepared a construct (diameter, 6.3 mm; height, 5.0 mm) comprising approximately 1920 spheroids containing 3.0 × 104 cells each. This construct was confirmed to be positive for type I collagen and negative for type II collagen, Alcian blue, and Safranin-O upon histological analysis and was subsequently implanted into an osteochondral defect (diameter, 6.8 mm; depth, 5.0 mm) at the right femoral medial condyle. The contralateral (left femoral) defect served as the control. At 3 and 6 months after surgery, the radiolucent volume (RV, mm3) of the defects was calculated based on multiplanar reconstruction of computed tomography (CT) images. Magnetic resonance (MR) images were evaluated using a modified two-dimensional MR observation of cartilage repair tissue (MOCART) grading system, while macroscopic (gross) and microscopic histological characteristics were scored according to the International Cartilage Repair Society (ICRS) scale. Compared to the control sites, the implanted defects showed lower RV percentages, better total MOCART scores, higher average gross scores, and higher average histological scores. Conclusions: Implantation of a scaffold-free 3D-construct of SM-MSCs into an osteochondral defect could regenerate the original structure of the cartilage and subchondral bone over 6 months post-surgery in horses, indicating the potential of this technique in treating equine subchondral bone cysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。