The Construction of the Self-Induced Sal System and Its Application in Salicylic Acid Production

自诱导水杨酸体系的建立及其在水杨酸生产中的应用

阅读:7
作者:Xin Jin, Yaping Gao, Xuanmu Chen, Sumeng Wang, Qingsheng Qi, Quanfeng Liang

Abstract

The design and construction of more complex and delicate genetic control circuits suffer from poor orthogonality in quorum sensing (QS) systems. The Sal system, which relies on salicylic acid as a signaling molecule, is an artificially engineered regulatory system with a structure that differs significantly from that of natural QS signaling molecules. Salicylic acid is an important drug precursor, mainly used in the production of drugs such as aspirin and anti-HIV drugs. However, there have been no reports on the construction of a self-induced Sal system in single cells. In this study, a high-copy plasmid backbone was used to construct the regulatory proteins and a self-induced promoter of salicylic acid in E. coli by adjusting the precise regulation of key gene expression; the sensitivity and induction range of this system were improved. Subsequently, the exogenous gene pchBA was introduced in E. coli to extend the shikimate pathway and synthesize salicylic acid, resulting in the construction of the first complete self-induced Sal system. Finally, the self-induced Sal System was combined with artificial trans-encoded sRNAs (atsRNAs) to repress the growth-essential gene ppc and accumulate the precursor substance PEP, thereby increasing the titer of salicylic acid by 151%. This construction of a self-induced artificial system introduces a new tool for selecting communication tools and induction systems in synthetic biology and metabolic engineering, but also demonstrates a self-inducible pathway design strategy for salicylic acid biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。