Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell

高效钙钛矿太阳能电池金属电极的快速蒸发

阅读:5
作者:Runsheng Wu, Shigen Sun, Dongyang Liu, Junjie Lai, Yingjie Yu, Shijie Hu, Jun Liu, Shuigen Li, Yunming Li, Ling Li, Minhua Jiang, Chengyu Liu, Jun Deng, Chunhua Wang

Abstract

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted considerable attention due to the excellent optoelectronic properties of perovskite materials. The energy consumption and high cost issues of metal electrode evaporation should be addressed before large-scale manufacturing and application. We developed an effective metal electrode evaporation procedure for the fabrication of high-efficiency planar heterojunction (PHJ) PSCs, with an inverted device structure of glass/indium tin oxide (ITO)/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/(E)-β-caryophyllene (BCP)/Ag. The effect of the evaporation rate for an evaporator with a small-volume metal cavity on the performance of PHJ-PSC devices was investigated systematically. Through controlling the processes of Ag electrode evaporation, the charge dynamics of the devices were studied by analyzing their charge recombination resistance and lifetime, as well as their defect state density. Our findings reveal that the evaporation rate of an evaporator with a small cavity is favorable for the performance of PHJ-PSCs. As a result, PHJ-PSCs fabricated using a very thin, non-doped PTAA film exhibit photoelectric conversion efficiency (PCE) of 19.21%, with an open-circuit voltage (Voc) of 1.132 V. This work showcases the great potential of rapidly evaporating metal electrodes to reduce fabrication costs, which can help to improve the competitiveness in the process of industrialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。