Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates using unique sequence tags

使用独特的序列标签对蛋白质及其修饰进行蛋白质组范围的识别,减少歧义并提高错误发现率

阅读:7
作者:Yufeng Shen, Nikola Tolić, Kim K Hixson, Samuel O Purvine, Ljiljana Pasa-Tolić, Wei-Jun Qian, Joshua N Adkins, Ronald J Moore, Richard D Smith

Abstract

Identifying proteins and their modification states and with known levels of confidence remains as a significant challenge for proteomics. Random or decoy peptide databases are increasingly being used to estimate the false discovery rate (FDR), e.g., from liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of tryptic digests. We show that this approach can significantly underestimate the FDR and describe an approach for more confident protein identifications that uses unique partial sequences derived from a combination of database searching and amino acid residue sequencing using high-accuracy MS/MS data. Applied to a Saccharomyces cerevisiae tryptic digest, the approach provided 3 132 confident peptide identifications ( approximately 5% modified in some fashion), covering 575 proteins with an estimated zero FDR. The conventional approach provided 3 359 peptide identifications and 656 proteins with 0.3% FDR based upon a decoy database analysis. However, the present approach revealed approximately 5% of the 3 359 identifications to be incorrect and many more as potentially ambiguous (e.g., due to not considering certain amino acid substitutions and modifications). In addition, 677 peptides and 39 proteins were identified that had been missed by conventional analysis, including nontryptic peptides, peptides with a variety of expected/unexpected chemical modifications, known/unknown post-translational modifications, single nucleotide polymorphisms or gene encoding errors, and multiple modifications of individual peptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。