Rational Design of New Monoterpene-Containing Azoles and Their Antifungal Activity

新型单萜唑类化合物的合理设计及其抗真菌活性

阅读:7
作者:Nikolai S Li-Zhulanov, Nadezhda P Zaikova, Suat Sari, Dolunay Gülmez, Suna Sabuncuoğlu, Keriman Ozadali-Sari, Sevtap Arikan-Akdagli, Andrey A Nefedov, Tatyana V Rybalova, Konstantin P Volcho, Nariman F Salakhutdinov

Abstract

Azole antifungals, including fluconazole, have long been the first-line antifungal agents in the fight against fungal infections. The emergence of drug-resistant strains and the associated increase in mortality from systemic mycoses has prompted the development of new agents based on azoles. We reported a synthesis of novel monoterpene-containing azoles with high antifungal activity and low cytotoxicity. These hybrids demonstrated broad-spectrum activity against all tested fungal strains, with excellent minimum inhibitory concentration (MIC) values against both fluconazole-susceptible and fluconazole-resistant strains of Candida spp. Compounds 10a and 10c with cuminyl and pinenyl fragments demonstrated up to 100 times lower MICs than fluconazole against clinical isolates. The results indicated that the monoterpene-containing azoles had much lower MICs against fluconazole-resistant clinical isolates of Candida parapsilosis than their phenyl-containing counterpart. In addition, the compounds did not exhibit cytotoxicity at active concentrations in the MTT assay, indicating potential for further development as antifungal agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。