Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago savita chalcone isomerase

通过一般酸催化、水排出和紫花苜蓿查尔酮异构酶的酶重组实现过渡态稳定

阅读:5
作者:Sun Hur, Zachary E R Newby, Thomas C Bruice

Abstract

In aqueous solution, Medicago savita chalcone isomerase (CHI) enhances the reaction rate for the unimolecular rearrangement of chalcone (CHN) into flavanone by seven orders of magnitude. Conformations of CHN and their relative free energies in water and CHI were investigated by the thermodynamic perturbation method. In water, CHN adopts two conformations (I and II) with conformation I being higher in energy than conformation II by 3 kcal/mol. Only I can give rise to a near attack conformer (NAC) where the nucleophile O2' and the electrophile C9 are placed in proximity. In CHI, I binds less tightly than II by approximately 2 kcal/mol, resulting in the free energy for NAC formation being approximately 2 kcal/mol higher in the enzyme than in water. This unfavorable feature in the ground state of the CHI reaction requires the predominant catalytic advantage to be taken in the step of NAC --> transition state (TS). From the molecular dynamics simulations of apo-CHI, CHI complexed with CHN (CHI.CHN) and CHI.TS, we found: (i) Lys-97-general-acid catalysis of the O2'(-) nucleophilic addition; (ii) expulsion of three water molecules in the process of TS formation; (iii) release of enzyme structural distortion on TS formation. In the conclusion, CHI's remarkable efficiency of stabilizing the TS and its relatively poor ability in organizing the ground state is compared with chorismate mutase whose catalytic prowess, when compared with water, originates predominantly from the enhanced NAC population at the active site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。