Sensing Glucose in Urine and Serum and Hydrogen Peroxide in Living Cells by Use of a Novel Boronate Nanoprobe Based on Surface-Enhanced Raman Spectroscopy

利用基于表面增强拉曼光谱的新型硼酸盐纳米探针检测尿液和血清中的葡萄糖以及活细胞中的过氧化氢

阅读:4
作者:Xin Gu, Hao Wang, Zachary D Schultz, Jon P Camden

Abstract

Hydrogen peroxide (H2O2) is known as a key molecule in a variety of biological processes, as well as a crucial byproduct in many enzymatic reactions. Therefore, being able to selectively and sensitively detect H2O2 is not only important in monitoring, estimating, and decoding H2O2 relevant physiological pathways but also very helpful in developing enzymatic-based biosensors for other analytes of interest. Herein, we report a plasmonic probe for H2O2 based on 3-mercaptophenylboronic acid (3-MPBA) modified gold nanoparticles (AuNPs) which is coupled with surface-enhanced Raman scattering (SERS) to yield a limit of detection (LOD) of 70 nM. Our probe quantifies both exogenous and endogenous H2O2 levels in living cells and can further be coupled with glucose oxidase (GOx) to achieve quantitative and selective detection of glucose in artificial urine and human serum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。