Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples

扩张蛋白 MdEXP-A1 的等位基因变异导致苹果收获时果肉硬度增加

阅读:7
作者:Qiufang Su #, Yifeng Feng #, Xianglu Li, Zidun Wang, Yuanwen Zhong, Zhengyang Zhao, Huijuan Yang

Abstract

Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F1 hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years. A total of 11 candidate intervals were identified on chromosomes 03, 05, 06, 07, 13, and 16 via BSA-seq analysis. We characterized a major QTL on chromosome 16 and selected a candidate gene encoding expansin MdEXP-A1 by combining RNA-seq analysis. Furthermore, the genotype of Del-1166 (homozygous deletion) in the MdEXP-A1 promoter was closely associated with the super-hard phenotype of F1 hybrids, which could be used as a functional marker for marker-assisted selection (MAS) in apple. Functional identification revealed that MdEXP-A1 positively expedited fruit softening in both apple fruits and tomatoes that overexpressed MdEXP-A1. Moreover, the promoter sequence of TE-1166 was experimentally validated containing two binding motifs of MdNAC1, and the absence of the MdEXP-A1 promoter fragment reduced its transcription activity. MdNAC1 also promotes the expression of MdEXP-A1, indicating its potential modulatory role in quality breeding. These findings provide novel insight into the genetic control of flesh firmness by MdEXP-A1.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。