High glucose-enhanced acetylcholine stimulated CGMP masks impaired vascular reactivity in tail arteries from short-term hyperglycemic rats

高糖增强乙酰胆碱刺激的 CGMP 掩盖短期高血糖大鼠尾动脉受损的血管反应性

阅读:7
作者:M Hamaty, C B Guzmán, M F Walsh, A M Bode, J Levy, J R Sowers

Aims

(1) the effects of high glucose exposure in vitro (7-10 days) on vascular relaxation to acetylcholine (Ach) and contractility to norepinephrine (NE) and KCl; (2) if NO-dependent cGMP generation is affected under these conditions; and (3) aortic redox status.

Conclusions

Our data indicate that endothelium-dependent relaxation is altered early in the diabetic state and that increased NO responses may compensate for augmented oxidative stress but the lack of effect of short-term exposure of normal vessels to HG suggests that short-term hyperglycemia per se does not cause abnormal vascular responses.

Methods

Non-diabetic rat tail artery rings were incubated in normal (5mM) (control NG) or high (20 mM) glucose buffer (control HG). Vascular responses to Ach, NE and KCl were compared to those of streptozotocin (SZ) diabetic animals in the same buffers (diabetic NG, diabetic HG). Ach-stimulated cGMP levels were quantitated as an indirect assessment of endothelial nitric oxide (NO) production and oxidative stress evaluated by measuring vascular glutathione and oxidized glutathione.

Results

Rings from diabetic rats in NG showed impaired relaxation to Ach (P = 0.002) but relaxed normally, when maintained in HG. Similarly, contractile responses to NE were attenuated in diabetic rings in NG but similar to controls in HG. HG markedly augmented maximal contraction to KCl compared to control and diabetic vessels in NG (P < 0.0001). Diabetic vessels in a hyperosmolar, but normoglycemic, milieu respond like those in HG. In vitro, HG for 2 hours changed neither relaxation nor contractile responses to NE and KCl in control rings. Basal cGMP levels were lower in aortae from diabetic animals pre-incubated in NG than in HG/LG or in control rings in NG (P < 0.05). cGMP responses to Ach were exaggerated in diabetic vessels in HG (P = 0.035 vs. control NG, P = 0.043 vs. diabetic NG) but not different between control and diabetic rings in NG. Vessels from diabetic animals had lower levels of GISH (P < 0.0001) and higher levels of GSSG (P < 0.0001) indicating oxidative stress. Conclusions: Our data indicate that endothelium-dependent relaxation is altered early in the diabetic state and that increased NO responses may compensate for augmented oxidative stress but the lack of effect of short-term exposure of normal vessels to HG suggests that short-term hyperglycemia per se does not cause abnormal vascular responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。