Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry

广泛的肽分馏和基于 y1 离子的干扰检测方法,可实现同量异位素标记和质谱法的准确定量

阅读:9
作者:Mingming Niu, Ji-Hoon Cho, Kiran Kodali, Vishwajeeth Pagala, Anthony A High, Hong Wang, Zhiping Wu, Yuxin Li, Wenjian Bi, Hui Zhang, Xusheng Wang, Wei Zou, Junmin Peng

Abstract

Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from coisolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection, and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT)-labeled Escherichia coli peptides at 1:3:10 ratios and added in ∼20-fold more rat peptides as background, followed by the analysis of two-dimensional liquid chromatography (LC)-MS/MS. Systematic investigation shows that quantitative interference was impacted by LC fractionation depth, MS isolation window, and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10 000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。