A bioinspired supramolecular nanoprodrug for precision therapy of B-cell non-Hodgkin's lymphoma

一种用于精准治疗B细胞非霍奇金淋巴瘤的仿生超分子纳米前药

阅读:1
作者:Qixiong Zhang ,Yuhan Tian ,Yanrui Yang ,Qiuying Huang ,Haibo Feng ,Rui Zeng ,Shanshan Li

Abstract

Fludarabine (FA) is still considered as a first-line chemotherapy drug for hematological tumors related to B lymphocytes. However, it is worth noting that the non-specific distribution and non-different cytotoxicity of FA may lead to irreversible consequences such as central nervous system damage such as blindness, coma, and even death. Therefore, it is very important to develop a system to targeting delivery FA. In preliminary studies, it was found that B lymphoma cells would specific highly expressing the sialic acid-binding immunoglobulin-like lectin 2 (known as CD22). Inspired by the specific recognition of sialic acid residues and CD22, we have developed a supramolecular prodrug based on polysialic acid, an endogenous biomacromolecule, achieving targeted-therapy of B-cell non-Hodgkin's lymphoma (B-NHL). Specifically, the prepared hydrophobic reactive oxygen species-responsive FA dimeric prodrug (F2A) interacts with the TPSA, which polysialic acid were modified by the thymidine derivatives, through non-covalent intermolecular interactions similar to "Watson-Crick" base pairing, resulting in the formation of nanoscale supramolecular prodrug (F@TPSA). Cell experiments have confirmed that F@TPSA can be endocytosed by CD22+ B lymphoma cells including Raji and Ramos cells, and there is a significant difference of endocytosis in other leukocytes. Furthermore, in B-NHL mouse model, compared with FA, F@TPSA is determined to have a stronger tumor targeting and inhibitory effect. More importantly, the distribution of F@TPSA in vivo tends to be enriched in lymphoma tissue rather than nonspecific, thus reducing the leukopenia of FA. The targeted delivery system based on PSA provides a new prodrug modification strategy for targeted treatment of B-NHL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。