"notame": Workflow for Non-Targeted LC-MS Metabolic Profiling

“notame”:非靶向液相色谱-质谱代谢组学分析的工作流程

阅读:2
作者:Anton Klåvus ,Marietta Kokla ,Stefania Noerman ,Ville M Koistinen ,Marjo Tuomainen ,Iman Zarei ,Topi Meuronen ,Merja R Häkkinen ,Soile Rummukainen ,Ambrin Farizah Babu ,Taisa Sallinen ,Olli Kärkkäinen ,Jussi Paananen ,David Broadhurst ,Carl Brunius ,Kati Hanhineva

Abstract

Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography-mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting. Keywords: LC–MS; computational statistical; mass spectrometry; metabolic profiling; metabolomics; pathway analysis; supervised learning; unsupervised learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。