Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles

二氧化硅包覆的磁性纳米粒子导致膜流动性和牵引力降低

阅读:5
作者:Tae Hwan Shin, Abdurazak Aman Ketebo, Da Yeon Lee, Seungah Lee, Seong Ho Kang, Shaherin Basith, Balachandran Manavalan, Do Hyeon Kwon, Sungsu Park, Gwang Lee

Background

Nanoparticles are being increasingly used in biomedical applications owing to their unique physical and chemical properties and small size. However, their biophysical assessment and evaluation of side-effects remain challenging. We addressed this issue by investigating the effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate [MNPs@SiO2(RITC)] on biophysical aspects, such as membrane fluidity and traction force of human embryonic kidney 293 (HEK293) cells. We further extended our understanding on the biophysical effects of nanoparticles on cells using a combination of metabolic profiling and transcriptomic network analysis.

Conclusion

Taken together, our results demonstrated that overdose of MNPs@SiO2(RITC) impairs cellular movement, followed by changes in the biophysical properties of cells, thus highlighting the need for biophysical assessment of nanoparticle-induced side-effects.

Results

Overdose (1.0 μg/µL) treatment with MNPs@SiO2(RITC) induced lipid peroxidation and decreased membrane fluidity in HEK293 cells. In addition, HEK293 cells were morphologically shrunk, and their aspect ratio was significantly decreased. We found that each traction force (measured in micropillar) was increased, thereby increasing the total traction force in MNPs@SiO2(RITC)-treated HEK293 cells. Due to the reduction in membrane fluidity and elevation of traction force, the velocity of cell movement was also significantly decreased. Moreover, intracellular level of adenosine triphosphate (ATP) was also decreased in a dose-dependent manner upon treatment with MNPs@SiO2(RITC). To understand these biophysical changes in cells, we analysed the transcriptome and metabolic profiles and generated a metabotranscriptomics network, which revealed relationships among peroxidation of lipids, focal adhesion, cell movement, and related genes and metabolites. Furthermore, in silico prediction of the network showed increment in the peroxidation of lipids and suppression of focal adhesion and cell movement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。