Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells

中性粒细胞样细胞脂质筏中的 LacCer 和 Lyn 之间直接相互作用,有助于信号传导过程

阅读:4
作者:Elena Chiricozzi, Maria Grazia Ciampa, Giuseppina Brasile, Federica Compostella, Alessandro Prinetti, Hitoshi Nakayama, Roudy C Ekyalongo, Kazuhisa Iwabuchi, Sandro Sonnino, Laura Mauri

Abstract

Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[(3)H]LacCer-(N3) and C24-[(3)H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[(3)H]LacCer-(N3), but not C18-[(3)H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[(3)H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[(3)H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。