Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry

通过将循环酶扩增与微流体电压辅助液体解吸电喷雾电离质谱法相结合来定量分析微小RNA

阅读:13
作者:Xiangtang Li, Pratik Rout, Rui Xu, Li Pan, Paul B Tchounwou, Yonggang Ma, Yi-Ming Liu

Abstract

Quantitative assay of microRNAs (miRNAs) with mass spectrometric detection currently suffers from two major disadvantages, i.e., being insufficient in sensitivity and requiring an extraction or chromatographic separation prior to MS detection. In this work, we developed a facile and sensitive assay of targeted miRNAs based on the combination of cyclic enzymatic amplification (CEA) with microfluidic voltage-assisted liquid desorption electrospray ionization tandem mass spectrometry (VAL-DESI-MS/MS). The single-stranded DNA (ssDNA) probe was designed to have a sequence complementary to the miRNA target with an extension of a two-base nucleotide fragment (i.e., CpC) at the 3'-position as MS signal reporter, thus being easy to prepare and high in stability. In the proposed CEA-VAL-DESI-MS/MS assay, an ssDNA probe was added to a sample solution, forming a DNA-miRNA hybrid. Duplex-specific nuclease (DSN) was then added to cleave specifically the DNA probe in the heteroduplex strands. As the hybridization-cleavage cycle repeated itself for many rounds, a large quantity of CpC molecules was produced that was quantified by VAL-DESI-MS/MS with accuracy and specificity. miRNA-21 was tested as the model target. The assay had a linear calibration equation in the range from 2.5 pM to 1.0 nM with a limit of detection of 0.25 pM. Determination of miRNA-21 in cellular samples was demonstrated. miRNA-21 was found to be 95.3 ± 13.95 amol ( n = 3) in 100 mouse peritoneal macrophages with a recovery of 94.2 ± 2.6% ( n = 3). Interestingly, analysis of exosomes secreted from these cells revealed that exposure of the cells to chemical stimuli caused a 3-fold increase in exosomal level of miRNA-21. The results suggest that the proposed assay may provide an accurate and cost-effective means for quantification of targeted miRNAs in biomedical samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。