Eicosapentaenoic Acid Improves Endothelial Nitric Oxide Bioavailability Via Changes in Protein Expression During Inflammation

二十碳五烯酸通过炎症期间蛋白质表达的变化提高内皮一氧化氮的生物利用度

阅读:7
作者:Samuel C R Sherratt, Peter Libby, Hazem Dawoud, Deepak L Bhatt, R Preston Mason

Background

Endothelial cell (EC) dysfunction involves reduced nitric oxide (NO) bioavailability due to NO synthase uncoupling linked to increased oxidation and reduced cofactor availability. Loss of endothelial function and NO bioavailability are associated with inflammation, including leukocyte activation. Eicosapentaenoic acid (EPA) administered as icosapent ethyl reduced cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) in relation to on-treatment EPA blood levels. The mechanisms of cardiovascular protection for EPA remain incompletely elucidated but likely involve direct effects on the endothelium.

Conclusions

These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.

Results

In this study, human ECs were treated with EPA and challenged with the cytokine IL-6 (interleukin-6). Proinflammatory responses in the ECs were confirmed by ELISA capture of sICAM-1 (soluble intercellular adhesion molecule-1) and TNF-α (tumor necrosis factor-α). Global protein expression was determined using liquid chromatography-mass spectrometry tandem mass tag. Release kinetics of NO and peroxynitrite were monitored using porphyrinic nanosensors. IL-6 challenge induced proinflammatory responses from the ECs as evidenced by increased release of sICAM-1 and TNF-α, which correlated with a loss of NO bioavailability. ECs pretreated with EPA modulated expression of 327 proteins by >1-fold (P<0.05), compared with IL-6 alone. EPA augmented expression of proteins involved in NO production, including heme oxygenase-1 and dimethylarginine dimethylaminohydrolase-1, and 34 proteins annotated as associated with neutrophil degranulation. EPA reversed the endothelial NO synthase uncoupling induced by IL-6 as evidenced by an increased [NO]/[peroxynitrite] release ratio (P<0.05). Conclusions: These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。