Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography

三维动态光学相干断层扫描无需标记即可显示肾脏的肾小管功能和形态

阅读:5
作者:Pradipta Mukherjee, Shinichi Fukuda, Donny Lukmanto, Thi Hang Tran, Kosuke Okada, Shuichi Makita, Ibrahim Abd El-Sadek, Yiheng Lim, Yoshiaki Yasuno

Abstract

Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 [Formula: see text]m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。