Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo

突变的 LRRK2 介导外周和中枢免疫反应,导致体内神经退行性病变

阅读:5
作者:Elena Kozina, Shankar Sadasivan, Yun Jiao, Yuchen Dou, Zhijun Ma, Haiyan Tan, Kiran Kodali, Timothy Shaw, Junmin Peng, Richard J Smeyne

Abstract

Missense mutations in the leucine rich repeat kinase 2 (LRRK2) gene result in late-onset Parkinson's disease. The incomplete penetrance of LRRK2 mutations in humans and LRRK2 murine models of Parkinson's disease suggests that the disease may result from a complex interplay of genetic predispositions and persistent exogenous insults. Since neuroinflammation is commonly associated with the pathogenesis of Parkinson's disease, we examine a potential role of mutant LRRK2 in regulation of the immune response and inflammatory signalling in vivo. Here, we show that mice overexpressing human pathogenic LRRK2 mutations, but not wild-type mice or mice overexpressing human wild-type LRRK2 exhibit long-term lipopolysaccharide-induced nigral neuronal loss. This neurodegeneration is accompanied by an exacerbated neuroinflammation in the brain. The increased immune response in the brain of mutant mice subsequently has an effect on neurons by inducing intraneuronal LRRK2 upregulation. However, the enhanced neuroinflammation is unlikely to be triggered by dysfunctional microglia or infiltrated T cells and/or monocytes, but by peripheral circulating inflammatory molecules. Analysis of cytokine kinetics and inflammatory pathways in the peripheral immune cells demonstrates that LRRK2 mutation alters type II interferon immune response, suggesting that this increased neuroinflammatory response may arise outside the central nervous system. Overall, this study suggests that peripheral immune signalling plays an unexpected-but important-role in the regulation of neurodegeneration in LRRK2-associated Parkinson's disease, and provides new targets for interfering with the onset and progression of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。