Impact of Metal Salt Oxidants and Preparation Technology on Efficacy of Bacterial Cellulose/Polypyrrole Flexible Conductive Fiber Membranes

金属盐氧化剂及制备工艺对细菌纤维素/聚吡咯柔性导电纤维膜功效的影响

阅读:7
作者:Sixuan Tao, Qun Yang, Huili Qiu, Jie Zhu, Weimian Zhou, Juan Su, Ning Zhang, Lihui Xu, Hong Pan, Hongjuan Zhang, Jiping Wang

Abstract

In this study, we investigated the preparation and characterization of flexible conductive fiber membranes (BC/PPy) using different metal salt oxidants on bacterial cellulose (BC) and pyrrole (Py) in the in situ polymerization and co-blended methods, respectively. The effects of these oxidants, namely, ferric chloride hexahydrate (FeCl3·6H2O) and silver nitrate (AgNO3), on the structural characterization, conductivity, resistance value and thermal stability of the resulting materials were assessed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A comparative study revealed that the BC/PPy conductive fiber membrane prepared using FeCl3·6H2O as the oxidant had a resistance value of 12 Ω, while the BC/PPy conductive fiber membrane prepared using AgNO3 as the oxidant had an electrical resistance value of 130 Ω. The conductivity of the same molar ratio of BC/PPy prepared using FeCl3·6H2O as an oxidant was 10 times higher than that of the BC/PPy prepared using AgNO3 as an oxidant. Meanwhile, the resistance values of the conductive fiber membranes prepared from BC and PPy by the co-blended method were much higher than the BC/PPy prepared by in situ polymerization. SEM and XPS analyses revealed that when FeCl3·6H2O was used as the oxidant, the Fe-doped polypyrrole conductive particles could form uniform and dense conductive layers on the BC nanofiber surfaces. These two metal salt oxidants demonstrated differences in the binding sites between PPy and BC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。