Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications

用于建筑一体化光伏 (BIPV) 应用的染料敏化太阳能电池

阅读:7
作者:Marek Szindler, Magdalena Szindler, Aleksandra Drygała, Krzysztof Lukaszkowicz, Paulina Kaim, Rafał Pietruszka

Abstract

One of the important research directions in the field of photovoltaics is integration with construction. The integration of solar cell systems with a building can reduce installation costs and help optimize the used space. Among the few literature reports on photovoltaic roof tiles, solutions with silicon and thin film solar cells dominate. An interesting solution may be the application of dye-sensitized solar cells. In addition to their interesting properties, they also have aesthetic value. In the classic arrangement, they are constructed using glass with a transparent conductive layer (TCL). This article describes replacing a classic glass counter electrode with an electrode based on a ceramic tile and nickel foil. First, a continuous and homogeneous fluorine-doped tin oxide (FTO) thin film was developed so that the above-mentioned substrate could be applied. The atomization method was used for this purpose. Then, nanocolloidal platinum paste was deposited as a catalytic material using the screen printing method. The electrical parameters of the manufactured DSSCs with and without a counter electrode tile were characterized by measuring their current-voltage characteristics under standard AM 1.5 radiation. A dye-sensitized solar cell integrated with ceramic tiles and nickel foil was produced and displayed an efficiency of over 4%. This solution makes it possible to expand their construction applications. The advantage of this solution is full integration with construction, while simultaneously generating electricity. A dye-sensitized solar cell was built layer-by-layer on a ceramic tile and nickel foil.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。