Diagenetic formation of uranium-silica polymers in lake sediments over 3,300 years

3300 多年来湖泊沉积物中铀-硅聚合物的成岩形成

阅读:11
作者:Pierre Lefebvre, Alkiviadis Gourgiotis, Arnaud Mangeret, Pierre Sabatier, Pierre Le Pape, Olivier Diez, Pascale Louvat, Nicolas Menguy, Pauline Merrot, Camille Baya, Mathilde Zebracki, Pascale Blanchart, Emmanuel Malet, Didier Jézéquel, Jean-Louis Reyss, John R Bargar, Jérôme Gaillardet, Charlotte C

Abstract

The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350-760 µg ⋅ g-1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L3 -edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)-silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)-silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。