In vivo and in vitro protective effects of omeprazole against neuropathic pain

奥美拉唑对神经性疼痛的体内和体外保护作用

阅读:7
作者:Sanjay K Chanchal, Umesh B Mahajan, Sumit Siddharth, Navyya Reddy, Sameer N Goyal, Prakash H Patil, Basavaraj P Bommanahalli, Chanakya N Kundu, Chandragouda R Patil, Shreesh Ojha

Abstract

Apart from reducing the acid secretion, omeprazole inhibits activation of the nuclear factor-κB, release of inflammatory cytokines, and chemotaxis of neutrophils. These mechanisms prompted us to evaluate antineuropathic effect of omeprazole in the chronic constriction injury (CCI)-induced rat model of neuropathic pain and LPS mediated ROS-induced U-87 cells. Omeprazole at 50 mg/kg/day/oral for 14 days significantly reduced the intensity of neuropathic pain estimated as paw withdrawal latency, withdrawal pressure threshold and restored the motor nerve conduction velocity in the constricted nerve, when compared with respective groups. The histological findings revealed the protective effect of omeprazole against the CCI-induced damage. Omeprazole significantly decreased the levels of tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) as compared to their respective control groups. It also reduced the oxidative stress by up regulating the SOD, catalase activity and decreasing MDA content. Similarly, in-vitro study, LPS mediated ROS-induced U-87 cells, omeprazole reduced the oxidative stress as well as the release of TNF-α, IL-1β and IL-6. Altogether, these results suggest that, neuroprotective effect of omeprazole is mediated through preventing release of proinflammatory cytokines, augmenting endogenous anti-oxidant defense system, and maintain the structural integrity of sciatic nerve from the CCI-induced structural damage and inflammatory changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。