Robust Induced Presynapse on Artificial Substrates as a Neural Interfacing Method

在人工基质上稳健诱导突触作为神经接口方法

阅读:5
作者:Joohee Jeon, Min-Ah Oh, Wonkyung Cho, Sun-Heui Yoon, Ji Yong Kim, Taek Dong Chung

Abstract

Over the recent years, the development of neural interface systems has stuck to using electrical cues to stimulate neurons and read out neural signals, although neurons relay signals via chemical release and recognition at synapses. In addition, conventional neural interfaces are vulnerable to cell migration and glial encapsulation due to the absence of connection anchoring the neuron into the device unlike synapses, which are firmly sustained by protein bonding. To close this discrepancy, we conducted an intensive investigation into the induced synapse interface by employing engineered synaptic proteins from a neural interface perspective. The strong potential of induced synaptic differentiation as an emerging neural interfacing technique is demonstrated by exploring its structural features, chemical release kinetics, robustness, and scalability to the brain tissue. We show that the exocytosis kinetics of induced synapses is similar to that of endogenous synapses. Moreover, induced synapses show remarkable stability, despite cell migration and growth. The synapse-inducing technique has broad applications to cultured hippocampal and cortex tissues and suggests a promising method to integrate neural circuits with digital elements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。