Insulin restores the neurochemical effects of nicotine in the mesolimbic pathway of diabetic rats

胰岛素恢复尼古丁在糖尿病大鼠中脑边缘通路中的神经化学作用

阅读:4
作者:Bryan Cruz, Luis M Carcoba, Rodolfo J Flores, Evangelina J Espinoza, Arbi Nazarian, Laura E O'Dell

Abstract

This study examined whether insulin modulates the neurochemical effects of nicotine in the mesolimbic pathway of diabetic rats. The rats received vehicle or streptozotocin (STZ) to induce hypoinsulinemia. A subset of STZ-treated rats was implanted with insulin pellets that rapidly normalized glucose levels. Two-weeks later, dialysis probes were implanted into the nucleus accumbens (NAc) and ipsilateral ventral tegmental area (VTA). The next day, dialysate samples were collected during baseline and then following systemic administration of nicotine. Samples were also collected following intra-VTA administration of the gamma-aminobutyric acid (GABA)A receptor antagonist, bicuculline. Dopamine, GABA, glutamate, and acetylcholine (ACh) levels were assessed using liquid chromatography/mass spectrometry (LC/MS). The results revealed that vehicle-treated rats displayed a nicotine-induced increase in NAc dopamine levels. In contrast, STZ-treated rats did not display any changes in NAc dopamine following nicotine administration, an effect that was likely related to a concomitant increase in GABA and decrease in glutamate levels in both the NAc and VTA. Intra-VTA administration of bicuculline increased NAc dopamine in vehicle-treated rats, and this effect was absent in STZ-treated rats. Vehicle-treated rats displayed a nicotine-induced increase in ACh levels in the NAc (but not VTA), an effect that was lower in the NAc of STZ-treated rats. Insulin supplementation normalized the neurochemical effects of nicotine in the NAc and VTA of STZ-treated rats, suggesting that insulin modulates the neurochemical effects of nicotine in the mesolimbic pathway of diabetic rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。