The mediator complex subunit 1 enhances transcription of genes needed for adrenal androgen production

介质复合物亚基 1 增强肾上腺雄激素产生所需基因的转录

阅读:4
作者:Yasuhiro Nakamura, Yewei Xing, Hironobu Sasano, William E Rainey

Abstract

There are three enzymes involved in the biosynthesis of the adrenal androgen dehydroepiandrosterone (DHEA) sulfate. Cholesterol side-chain cleavage (CYP11A1) and 17alpha-hydroxylase/17,20-lyase (CYP17) metabolize cholesterol into DHEA, whereas steroid sulfotransferase family 2A1 (SULT2A1) is responsible for conversion of DHEA to DHEA sulfate. We previously examined the mechanisms regulating CYP11A1, CYP17, and SULT2A1 transcription and found that each is regulated, in part, by the transcription factor GATA-6. Previous studies suggested that mediator complex subunit 1 (MED1, also called PPARBP or TRAP220) is a cofactor involved in not only the regulation of nuclear receptors but also the activation of GATA-6 transcription. Herein we demonstrated a role for MED1 in the regulation of CYP11A1, CYP17, and SULT2A1 transcription. Transient transfection assays with SULT2A1 deletion and mutation promoter constructs allowed the determination of specific the GATA-6 binding cis-regulatory elements necessary for transactivation of SULT2A1 transcription. Binding of MED1 and GATA-6 was confirmed by coimmunoprecipitation/Western analysis and chromatin immunoprecipitation assay. We demonstrated expression of MED1 mRNA and protein in the human adrenal and determined that knockdown of MED1 expression via specific small interfering RNA attenuated CYP11A1, CYP17, and SULT2A1 expression levels in H295R cells. In addition, we demonstrated that MED1 enhanced GATA-6 stimulated transcription of promoter constructs for each of these genes. Moreover, the activity of MED1 for SULT2A1 promoter was mediated by GATA-6 via the -190 GATA-binding site. These data support the hypothesis that MED1 and GATA-6 are key regulators of SULT2A1 expression, and they play important roles in adrenal androgen production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。