A new hemizygous missense mutation, c.454T>C (p.S152P), in AKAP4 gene is associated with asthenozoospermia

AKAP4 基因中新的半合错义突变 c.454T>C (p.S152P) 与弱精子症相关

阅读:4
作者:Longjie Gu, Xiaming Liu, Jun Yang, Jian Bai

Abstract

Asthenozoospermia (ASZ) is a condition characterized by reduced forward motility of spermatozoa affecting approximately 19% of infertile men. A kinase anchor protein 4 (AKAP4) is an X-linked testis-specific gene and plays a major role in sperm motility and flagella formation. However, few studies have reported its association with ASZ. Here, we sequenced for exonic mutations of human AKAP4 gene by high-fidelity PCR/Sanger sequencing in peripheral blood samples from 150 ASZ patients and 150 fertile men. We reported the identification of three novel hemizygous mutations unique to four ASZ patients, including one patient carrying missense mutation c.454T>C (p.S152P), two patient carrying synonymous mutation c.1173T>C (p.H391H), and one patient carrying synonymous mutation c.2007 A>G (p.R669R). The p.S152P mutation was located in a precursor pro-polypeptide domain of AKAP4 protein, which was predicted to be damaging by SIFT and PolyPhen-2 and could cause the protein accumulation in the cytoplasm of COS-7 cells. The mature protein of AKAP4 was absent in spermatozoa of ASZ patient harboring AKAP4 p.S152P mutation. Further in vitro cellular assays showed that reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO) levels, and apoptotic cells were increased in GC2-spd cells by AKAP4 p.S152P mutant protein, whereas superoxide dismutase (SOD) level was decreased. AKAP4 p.H391H and p.R669R mutant proteins were coimmunoprecipitated with ribonuclease T2 (RNASET2) protein in GC2-spd cells, whereas no interaction between the AKAP4 p.S152P mutant protein and RNASET2 protein was observed. In addition, AKAP4 p.S152P mutant protein could decrease the activity of PKA/PI3K signaling. Overall, our study identifies a novel AKAP4 p.S152P mutation is associated with ASZ probably through affecting oxidative stress and cell apoptosis by regulating the interaction with RNASET2 and the activity of the PKA/PI3K signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。