Metal-organic framework nanoparticles activate cGAS-STING pathway to improve radiotherapy sensitivity

金属有机骨架纳米粒子激活cGAS-STING通路提高放射治疗敏感性

阅读:4
作者:Xinyao Hu #, Hua Zhu #, Yang Shen #, Lang Rao, Jiayi Li, Xiaoqin He, Ximing Xu

Abstract

Tumor immunotherapy aims to harness the immune system to identify and eliminate cancer cells. However, its full potential is hindered by the immunosuppressive nature of tumors. Radiotherapy remains a key treatment modality for local tumor control and immunomodulation within the tumor microenvironment. Yet, the efficacy of radiotherapy is often limited by tumor radiosensitivity, and traditional radiosensitizers have shown limited effectiveness in hepatocellular carcinoma (HCC). To address these challenges, we developed a novel multifunctional nanoparticle system, ZIF-8@MnCO@DOX (ZMD), designed to enhance drug delivery to tumor tissues. In the tumor microenvironment, Zn²⁺ and Mn²⁺ ions released from ZMD participate in a Fenton-like reaction, generating reactive oxygen species (ROS) that promote tumor cell death and improve radiosensitivity. Additionally, the release of doxorubicin (DOX)-an anthracycline chemotherapeutic agent-induces DNA damage and apoptosis in cancer cells. The combined action of metal ions and double-stranded DNA (dsDNA) from damaged tumor cells synergistically activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, thereby initiating a robust anti-tumor immune response. Both in vitro and in vivo experiments demonstrated that ZMD effectively activates the cGAS-STING pathway, promotes anti-tumor immune responses, and exerts a potent tumor-killing effect in combination with radiotherapy, leading to regression of both primary tumors and distant metastases. Our work provides a straightforward, safe, and effective strategy for combining immunotherapy with radiotherapy to treat advanced cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。