Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo

二氧化硅纳米粒子对体内外尺寸依赖性视网膜毒性的机制研究

阅读:5
作者:Zhuhong Zhang, Laien Zhao, Yuanyuan Ma, Jia Liu, Yanmei Huang, Xiaoxuan Fu, Shengjun Peng, Xiaojie Wang, Yun Yang, Xiaoyan Zhang, Wanru Ding, Jinguo Yu, Yanping Zhu, Hua Yan, Shubin Yang

Background

Silica nanoparticles (SiO2 NPs) are extensively applied in the biomedical field. The increasing medical application of SiO2 NPs has raised concerns about their safety. However, studies on SiO2 NP-induced retinal toxicity are lacking.

Conclusions

These results provide evidence that SiO2 NPs induce size-dependent retinal toxicity and suggest that glial cell activation and ROS generation contribute to this toxicity.

Methods

We investigated the retinal toxicity of SiO2 NPs with different sizes (15 and 50 nm) in vitro and in vivo along with the underlying mechanisms. The cytotoxicity of SiO2 NPs with different sizes was assessed in R28 human retinal precursor cells by determining the ATP content and LDH release. The cell morphologies and nanoparticle distributions in the cells were analyzed by phase-contrast microscopy and transmission electron microscopy, respectively. The mitochondrial membrane potential was examined by confocal laser scanning microscopy. The retinal toxicity induced by SiO2 NPs in vivo was examined by immunohistochemical analysis. To further investigate the mechanism of retinal toxicity induced by SiO2 NPs, reactive oxygen species (ROS) generation, glial cell activation and inflammation were monitored.

Results

The 15-nm SiO2 NPs were found to have higher cytotoxicity than the larger NPs. Notably, the 15-nm SiO2 NPs induced retinal toxicity in vivo, as demonstrated by increased cell death in the retina, TUNEL-stained retinal cells, retinal ganglion cell degeneration, glial cell activation, and inflammation. In addition, The SiO2 NPs caused oxidative stress, as demonstrated by the increase in the ROS indicator H2DCF-DA. Furthermore, the pretreatment of R28 cells with N-acetylcysteine, an ROS scavenger, attenuated the ROS production and cytotoxicity induced by SiO2 NPs. Conclusions: These results provide evidence that SiO2 NPs induce size-dependent retinal toxicity and suggest that glial cell activation and ROS generation contribute to this toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。