Spherulites of amyloid-beta42 in vitro and in Alzheimer's disease

体外和阿尔茨海默病中的淀粉样β蛋白42球晶

阅读:7
作者:Christopher Exley, Emily House, Joanna F Collingwood, Mark R Davidson, Danielle Cannon, Athene M Donald

Abstract

Several amyloidogenic proteins including insulin, beta-lactoglobulin, and albumin form spherulites in vitro under non-physiological conditions. These micrometer-sized, roughly spherical structures are composed of ordered arrays of amyloid fibrils in radial arrangements which, characteristically, show a typical Maltese cross pattern of light extinction under the polarizing microscope. The physiological significance of amyloid spherulites is unknown though in Alzheimer's disease, senile plaques composed primarily of beta sheets of amyloid-beta (Abeta)42 have, very occasionally, been shown to give a Maltese cross pattern of light extinction under crossed polarizers. Herein we describe the first observation of the formation in vitro of spherulites of Abeta42. They were formed under near-physiological conditions in which the beta sheet conformation of pre-formed aggregates of Abeta42 had been abolished following the addition of an excess of copper. Incubation of these preparations at 37 degrees C for up to 9 months resulted in the formation of globular structures, 5-20 microm in diameter, which exhibited a Maltese cross pattern of light extinction typical of spherulites. Near-identical spherulitic structures were also observed in abundance in 30 microm thick sections of Alzheimer's disease brain tissue. Synchrotron x-ray fluorescence showed that the location of these spherulites in AD tissue coincided with locally elevated concentrations of tissue copper. The formation in vitro of spherulites of Abeta42 which morphologically appeared analogous to spherulitic structures observed in vivo strongly supports the hypothesis that spherulites and senile plaques in AD tissue are one and the same structures and that their ultimate formation may involve copper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。