First Novel Workflow for Semiquantification of Emerging Contaminants in Environmental Samples Analyzed by Gas Chromatography-Atmospheric Pressure Chemical Ionization-Quadrupole Time of Flight-Mass Spectrometry

首个通过气相色谱-大气压化学电离-四极杆飞行时间质谱法对环境样品中的新兴污染物进行半定量分析的新型工作流程

阅读:5
作者:Reza Aalizadeh, Varvara Nikolopoulou, Nikiforos A Alygizakis, Nikolaos S Thomaidis

Abstract

The ionization efficiency of emerging contaminants was modeled for the first time in gas chromatography-high-resolution mass spectrometry (GC-HRMS) which is coupled to an atmospheric pressure chemical ionization source (APCI). The recent chemical space has been expanded in environmental samples such as soil, indoor dust, and sediments thanks to recent use of high-resolution mass spectrometric techniques; however, many of these chemicals have remained unquantified. Chemical exposure in dust can pose potential risk to human health, and semiquantitative analysis is potentially of need to semiquantify these newly identified substances and assist with their risk assessment and environmental fate. In this study, a rigorously tested semiquantification workflow was proposed based on GC-APCI-HRMS ionization efficiency measurements of 78 emerging contaminants. The mechanism of ionization of compounds in the APCI source was discussed via a simple connectivity index and topological structure. The quantitative structure-property relationship (QSPR)-based model was also built to predict the APCI ionization efficiencies of unknowns and later use it for their quantification analyses. The proposed semiquantification method could be transferred into the household indoor dust sample matrix, and it could include the effect of recovery and matrix in the predictions of actual concentrations of analytes. A suspect compound, which falls inside the application domain of the tool, can be semiquantified by an online web application, free of access at http://trams.chem.uoa.gr/semiquantification/.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。