Development of Improved Double-Nanobody Sandwich ELISAs for Human Soluble Epoxide Hydrolase Detection in Peripheral Blood Mononuclear Cells of Diabetic Patients and the Prefrontal Cortex of Multiple Sclerosis Patients

开发改进的双纳米抗体夹心 ELISA 方法,用于检测糖尿病患者外周血单核细胞和多发性硬化症患者前额叶皮质中的人可溶性环氧化物水解酶

阅读:8
作者:Dongyang Li, Christophe Morisseau, Cindy B McReynolds, Thomas Duflot, Jérémy Bellien, Rashed M Nagra, Ameer Y Taha, Bruce D Hammock

Abstract

Nanobodies have been progressively replacing traditional antibodies in various immunological methods. However, the use of nanobodies as capture antibodies is greatly hampered by their poor performance after passive adsorption to polystyrene microplates, and this restricts the full use of double nanobodies in sandwich enzyme-linked immunosorbent assays (ELISAs). Herein, using the human soluble epoxide hydrolase (sEH) as a model analyte, we found that both the immobilization format and the blocking agent have a significant influence on the performance of capture nanobodies immobilized on polystyrene and the subsequent development of double-nanobody sandwich ELISAs. We first conducted epitope mapping for pairing nanobodies and then prepared a horseradish-peroxidase-labeled nanobody using a mild conjugation procedure as a detection antibody throughout the work. The resulting sandwich ELISA using a capture nanobody (A9, 1.25 μg/mL) after passive adsorption and bovine serum albumin (BSA) as a blocking agent generated a moderate sensitivity of 0.0164 OD·mL/ng and a limit of detection (LOD) of 0.74 ng/mL. However, the introduction of streptavidin as a linker to the capture nanobody at the same working concentration demonstrated a dramatic 16-fold increase in sensitivity (0.262 OD·mL/ng) and a 25-fold decrease in the LOD for sEH (0.03 ng/mL). The streptavidin-bridged double-nanobody ELISA was then successfully applied to tests for recovery, cross-reactivity, and real samples. Meanwhile, we accidentally found that blocking with skim milk could severely damage the performance of the capture nanobody by an order of magnitude compared with BSA. This work provides guidelines to retain the high effectiveness of the capture nanobody and thus to further develop the double-nanobody ELISA for various analytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。