Mutation of arginine residues to avoid non-specific cellular uptakes for hepatitis B virus core particles

精氨酸残基突变以避免细胞对乙肝病毒核心颗粒的非特异性摄取

阅读:5
作者:Izzat Fahimuddin Bin Mohamed Suffian, Yuya Nishimura, Kenta Morita, Sachiko Nakamura-Tsuruta, Khuloud T Al-Jamal, Jun Ishii, Chiaki Ogino, Akihiko Kondo

Background

The hepatitis B virus core (HBc) particle is known as a promising new carrier for the delivery of drugs and nucleic acids. However, since the arginine-rich domain that is located in the C-terminal region of the HBc monomer binds to the heparan sulphate proteoglycan on the cell surface due to its positive charge, HBc particles are introduced non-specifically into a wide range of cells. To avoid non-specific cellular uptake with the intent to control the ability of cell targeting, we individually replaced the respective arginine (R) residues of the arginine-rich domain located in amino acid positions 150-159 in glycine (G) residues.

Conclusions

Because this mutant particle retains most of its C-terminal arginine-rich residues, it would be useful in the targeting of specificity-altered HBc particles in the delivery of nucleic acids.

Results

The mutated HBc particles in which R154 was replaced with glycine (G) residue (R154G) showed a drastic decrease in the ability to bind to the heparan sulphate proteoglycan and to avoid non-specific cellular uptake by several types of cancer cells. Conclusions: Because this mutant particle retains most of its C-terminal arginine-rich residues, it would be useful in the targeting of specificity-altered HBc particles in the delivery of nucleic acids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。