Real-time imaging reveals endothelium-mediated leukocyte retention in LPS-treated lung microvessels

实时成像揭示 LPS 处理的肺微血管中内皮介导的白细胞滞留

阅读:4
作者:Kathirvel Kandasamy, Geetaram Sahu, Kaushik Parthasarathi

Abstract

Endotoxemia, a major feature of sepsis, is a common cause of acute lung injury and initiates rapid accumulation of leukocytes in the lung vasculature. Endothelial mechanisms that underlie this accumulation remain unclear, as current experimental models of endotoxemia are less suitable for targeted activation of the endothelium. Toward elucidating this, we used the isolated blood-perfused rat lung preparation. With a microcatheter inserted through a left atrial cannula, we cleared blood cells from a small lung region and then infused lipopolysaccharide (LPS) into microvessels. After a Ringer's wash to remove residual LPS, we infused fluorescently-labeled autologous leukocytes and imaged their transit through the treated microvessels. Image analysis revealed that leukocytes infused 90 min after LPS treatment were retained more in treated venules and capillaries than untreated vessels. Further, pretreatment with either the intercellular adhesion molecule-1 (ICAM-1) mAb or polymyxin-B blunted LPS-induced leukocyte retention in both microvessel segments. In addition, retention of leukocytes treated ex vivo with LPS in LPS-treated microvessels was higher compared to retention of untreated leukocytes. In situ immunofluorescence experiments revealed that LPS significantly increased microvessel ICAM-1 expression at 90 min post treatment. Polymyxin pretreatment inhibited this increase. Taken together, the data suggest that LPS increased leukocyte retention in both venules and capillaries and this response was mediated by the increased expression of endothelial ICAM-1. Thus, endothelial mechanisms may themselves play a major role in LPS-induced leukocyte retention in lung microvessels. Blunting the endothelial responses may mitigate endotoxin-induced morbidity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。