Basidiomycota species in Drosophila gut are associated with host fat metabolism

果蝇肠道中的担子菌种与宿主脂肪代谢有关

阅读:7
作者:Berkay Bozkurt, Gamze Terlemez, Efe Sezgin

Abstract

The importance of bacterial microbiota on host metabolism and obesity risk is well documented. However, the role of fungal microbiota on host storage metabolite pools is largely unexplored. We aimed to investigate the role of microbiota on D. melanogaster fat metabolism, and examine interrelatedness between fungal and bacterial microbiota, and major metabolic pools. Fungal and bacterial microbiota profiles, fat, glycogen, and trehalose metabolic pools are measured in a context of genetic variation represented by whole genome sequenced inbred Drosophila Genetic Reference Panel (DGRP) samples. Increasing Basidiomycota, Acetobacter persici, Acetobacter pomorum, and Lactobacillus brevis levels correlated with decreasing triglyceride levels. Host genes and biological pathways, identified via genome-wide scans, associated with Basidiomycota and triglyceride levels were different suggesting the effect of Basidiomycota on fat metabolism is independent of host biological pathways that control fungal microbiota or host fat metabolism. Although triglyceride, glycogen and trehalose levels were highly correlated, microorganisms' effect on triglyceride pool were independent of glycogen and trehalose levels. Multivariate analyses suggested positive interactions between Basidiomycota, A. persici, and L. brevis that collectively correlated negatively with fat and glycogen pools. In conclusion, fungal microbiota can be a major player in host fat metabolism. Interactions between fungal and bacterial microbiota may exert substantial control over host storage metabolite pools and influence obesity risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。