Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents

利用核桃衍生的生物吸附剂快速吸附去除废水中的铬

阅读:4
作者:Rajni Garg, Rishav Garg, Mika Sillanpää, Alimuddin, Mohammad Amir Khan, Nabisab Mujawar Mubarak, Yie Hua Tan

Abstract

Contamination of water resources by industrial effluents containing heavy metal ions and management of solid waste from agricultural and food industries is a serious issue. This study presents the valorization of waste walnut shells as an effective and environment-friendly biosorbent for sequestrating Cr(VI) from aqueous media. The native walnut shell powder (NWP) was chemically modified with alkali (AWP) and citric acid (CWP) to obtain modified biosorbents with abundant availability of pores as active centers, as confirmed by BET analysis. During batch adsorption studies, the process parameters for Cr(VI) adsorption were optimized at pH 2.0. The adsorption data were fitted to isotherm and kinetic models to compute various adsorption parameters. The adsorption pattern of Cr(VI) was well explained by the Langmuir model suggesting the adsorbate monolayer formation on the surface of the biosorbents. The maximum adsorption capacity, qm, for Cr(VI) was achieved for CWP (75.26 mg/g), followed by AWP (69.56 mg/g) and NWP (64.82 mg/g). Treatment with sodium hydroxide and citric acid improved the adsorption efficiency of the biosorbent by 4.5 and 8.2%, respectively. The endothermic and spontaneous adsorption was observed to trail the pseudo-second-order kinetics under optimized process parameters. Thus, the chemically modified walnut shell powder can be an eco-friendly adsorbent for Cr(VI) from aqueous solutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。