Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors

溶剂蒸汽中富溶胀的生物聚合物薄膜的形态特征

阅读:6
作者:Mihai Băbuțan, Ioan Botiz

Abstract

Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。