PGC-1α Promotes mitochondrial biosynthesis and energy metabolism of goose fatty liver

PGC-1α促进鹅肥肝线粒体生物合成及能量代谢

阅读:6
作者:Jiahui Li, Mengqing Lv, Zijin Yuan, Jing Ge, Tuoyu Geng, Daoqing Gong, Minmeng Zhao

Abstract

To investigate the functions of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the goose fatty liver, a total of 30 healthy 63-day-old male Landes geese were selected and randomly assigned to control group and overfeeding group. The overexpression or RNA interference assay of PGC-1α was performed in goose primary hepatocytes. Our data showed that the PGC-1α expression was increased in fatty liver. The abundance of mitochondrial biosynthesis-related and energy metabolism-related genes, including mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B1 (TFB1M), mitochondrial transcription factor B2 (TFB2M), nuclear respiratory factor 1 (NRF1), DNA topoisomerase I mitochondrial (TOP1MT), peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1β), sirtuin 3 (SIRT3), mitochondrially encoded cytochrome B (CYTB), and AMP-activated protein kinase alpha (AMPKα) were significantly increased in fatty liver. The abundance of TFAM, TFB1M, TFB2M, NRF1, and TOP1MT transcript was induced by PGC-1α overexpression, but inhibited by PGC-1α interference in primary hepatocytes. The mRNA expression levels of PGC-1β, SIRT3, SIRT5, CYTB, and AMPKα were significantly enhanced after PGC-1α overexpression. However, the mRNA expression levels of PGC-1β, SIRT5 and AMPKα were decreased after PGC-1α interference. Furthermore, we observed a significant increase in the mitochondrial DNA (mtDNA) copy number, the activity of mitochondrial respiratory chain complex Ⅳ (MRCC Ⅳ), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and the NAD+/NADH ratio in fatty liver. But the activity of MRCC Ⅴ, as well as the levels of ADP and ATP in fatty liver were reduced. Additionally, the mtDNA copy number, the activity of MRCC Ⅰ, MRCC Ⅲ-Ⅴ, SDH, and MDH, and NAD+/NADH ratio were enhanced by PGC-1α overexpression; Whereas the mtDNA copy number, the activity of MRCC Ⅰ, SDH, and MDH, and the ratio of NAD+/NADH were inhibited by PGC-1α interference. In conclusion, these findings suggest that PGC-1α improves mitochondrial biosynthesis and energy metabolism in goose fatty liver, which may be an adaptive mechanism for goose fatty liver to cope with steatosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。