A gadolinium-based magnetic ionic liquid for dispersive liquid-liquid microextraction

用于分散液-液微萃取的钆基磁性离子液体

阅读:6
作者:Mohamed A Abdelaziz, Fotouh R Mansour, Neil D Danielson

Abstract

A hydrophobic gadolinium-based magnetic ionic liquid (MIL) was investigated for the first time as an extraction solvent in dispersive liquid-liquid microextraction (DLLME). The tested MIL was composed of trihexyl(tetradecyl)phosphonium cations and paramagnetic gadolinium chloride anions. The prepared MIL showed low water miscibility, reasonable viscosity, markedly high magnetic susceptibility, adequate chemical stability, low UV background, and compatibility with reversed-phase HPLC solvents. These features resulted in a more efficient extraction than the corresponding iron or manganese analogues. Accordingly, the overall method sensitivity and reproducibility were improved, and the analysis time was reduced. The applicability of the proposed MIL was examined through the microextraction of four sartan antihypertensive drugs from aqueous samples followed by reversed-phase HPLC with UV detection at 240 nm. The DLLME procedures were optimized for disperser solvent type, MIL mass, disperser solvent volume, as well as acid, base, and salt addition. The limits of quantitation (LOQs) obtained with the analysis of 1.2-mL samples after DLLME and HPLC were 80, 30, 40, and 160 ng/mL for azilsartan medoxomil, irbesartan, telmisartan, and valsartan, respectively. Correlation coefficients were greater than 0.9988 and RSD values were in the range of 2.48-4.07%. Under the optimized microextraction conditions and using a 5-mL sample volume, enrichment factors were raised from about 40 for all sartans using a 1.2-mL sample to 175, 176, 169, and 103 for azilsartan medoxomil, irbesartan, valsartan, and telmisartan, respectively. The relative extraction recoveries for the studied sartans in river water varied from 82.5 to 101.48% at a spiked concentration of 0.5 μg/mL for telmisartan and irbesartan and 1 μg/mL for azilsartan medoxomil and valsartan. Graphical abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。